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Abstract

Background: Annual influenza epidemics significantly burden health care. Anticipating them allows for timely
preparation. The Scientific Institute of Public Health in Belgium (WIV-ISP) monitors the incidence of influenza and
influenza-like illnesses (ILIs) and reports on a weekly basis. General practitioners working in out-of-hour cooperatives
(OOH GPCs) register diagnoses of ILIs in an instantly accessible electronic health record (EHR) system.
This article has two objectives: to explore the possibility of modelling seasonal influenza epidemics using EHR ILI
data from the OOH GPC Deurne-Borgerhout, Belgium, and to attempt to develop a model accurately predicting
new epidemics to complement the national influenza surveillance by WIV-ISP.

Method: Validity of the OOH GPC data was assessed by comparing OOH GPC ILI data with WIV-ISP ILI data for the
period 2003–2012 and using Pearson’s correlation. The best fitting prediction model based on OOH GPC data was
developed on 2003–2012 data and validated on 2012–2015 data. A comparison of this model with other well-established
surveillance methods was performed. A 1-week and one-season ahead prediction was formulated.

Results: In the OOH GPC, 72,792 contacts were recorded from 2003 to 2012 and 31,844 from 2012 to 2015. The mean ILI
diagnosis/week was 4.77 (IQR 3.00) and 3.44 (IQR 3.00) for the two periods respectively. Correlation between OOHs and
WIV-ISP ILI incidence is high ranging from 0.83 up to 0.97. Adding a secular trend (5 year cycle) and using a first-order
autoregressive modelling for the epidemic component together with the use of Poisson likelihood produced the best
prediction results. The selected model had the best 1-week ahead prediction performance compared to existing
surveillance methods. The prediction of the starting week was less accurate (±3 weeks) than the predicted
duration of the next season.

Conclusion: OOH GPC data can be used to predict influenza epidemics both accurately and fast 1-week and
one-season ahead. It can also be used to complement the national influenza surveillance to anticipate optimal
preparation.
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Background
Annual influenza epidemics induce heavy burdens on pub-
lic health, including socio-economical and organizational
[1]. Dealing with each seasonal influenza epidemic means
an annual organizational challenge for health care systems.
Timely information on an upcoming epidemic is essential
to both optimising the organisation of manpower and
medication stockpiling.
Worldwide, surveillance systems play a central role in

supporting data-driven policies in public health inter-
vention. In Belgium, this activity is organized by the
Scientific Institute of Public Health (WIV-ISP) who pro-
vides weekly reports on the incidence of clinical
influenza-like illness (ILI) and virological data collected
by sentinel general practitioners (SGPs). Routine na-
tional surveillance data frequently have a reporting delay
compared to real time incidents. Their primary goal is to
announce the start/end of an influenza epidemic based
on the trespassing of a certain incidence threshold and
to document the impact of an ongoing influenza epi-
demic. Predicting future infuenza incidence is generally
not included.
Establishing early detection and prediction systems is a

crucial step to setting up effective control measures to
combat upcoming epidemics. These systems rely primarily
upon reliable and timely sources of data. In recent years,
data that are electronically and routinely collected have
emerged as convenient sources of surveillance data [2].
Health care is very often provided during out-of-hours

services (OOHs) as this period accounts for more than
two thirds of total care-time. In the last decade, the
organization of OOHs in primary care in Flanders,
Belgium improved dramatically through the on-going es-
tablishment of general practice cooperatives (GPCs). In
2003 Antwerp was the first region in Flanders to estab-
lish a GPC (Deurne-Borgerhout), which guided the es-
tablishment of many other GPCs. From the start, this
GPC invested in producing high-quality, encoded, elec-
tronic health record (EHR) data.
Other European countries have benefited from such

data collection initiatives. Data collected through the
general practice OOHs have shown the early warning
capability compared to the national surveillance system
in Ireland [3]. Also, in Ireland and in Denmark the

OOHs influenza-related calls peaked at least 1 week
ahead of the national ILI rates [3, 4]. These findings il-
lustrate the potential benefit of a regular analysis of ILI
diagnoses registered on the spot by the OOH GPCs. Up
to now no such analysis is performed and validated for
future use in Belgium. Therefore in this paper we aim to
develop a tool that can describe seasonal influenza epi-
demics earlier and as accurate as the national surveil-
lance system and predict upcoming epidemics in the
short and the long term based on OOH GPC EHR data
on ILI. If successful, This tool can be implemented
alongside the national influenza surveillance of the
WIV-ISP and in GPCs spread all over the country to
allow timely preparation for an upcoming epidemic by
the different healthcare providers.

Methods
Data collection
OOH GPC data
The clinical data were collected in an EHR in the GPC
Deurne-Borgerhout by the GPs on duty (about 100 each
year) during the weekend from Friday evening 7 pm until
Monday morning 7 am and on official holidays [5].
Deurne-Borgerhout is a part of the city of Antwerp,
Belgium with more than 100,000 inhabitants. The catch-
ment population covered by the GPC Deurne-Borgerhout
was retrieved from the official website of the city of
Antwerp, where the inhabitants of Deurne and
Borgerhout were described and counted per year [6]. ILI
diagnosis was based on the International Classification of
Primary Care (ICPC)-2 code definition (R80) [7] and on
the diagnostic study of Michiels et al. [8], i.e. a body
temperature > 37.8 °C and cough must be present com-
bined with other complaints such as headache, myalgia,
fatigue, runny or stuffed nose and expectoration. The total
number of consultations and the number of ILI diagnosed
were retrieved per day. Data were generally available the
first working day after the OOHs period, e.g. most com-
monly Monday after the weekend (Fig. 1).

WIV-ISP data
In Belgium, the influenza surveillance among the general
population is performed by the National Influenza Centre,
in collaboration with the Unit of Health Services Research

Fig. 1 Data collecting and reporting of the OOH GPC and the national surveillance system (WIV-ISP)
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and the Unit of Epidemiology of Infectious Diseases of the
WIV-ISP in Brussels [9]. A network of 120 to150 SGPs,
representing approximately 100,000–150,000 inhabitant-
s.is involved in the clinical and virological influenza sur-
veillance. The SGPs report on every patient with an ILI
whom they have encountered during office hours and, oc-
casionally during weekend OOHs, on a standardized
paper form or by e-fax and on a weekly basis. The general
criteria for ILI for the influenza surveillance are sudden
onset of symptoms, high fever, respiratory (i.e. cough, sore
throat) and systemic symptoms (headache, muscular pain)
[10]. The aggregated results, integrated with the viro-
logical results, are available online on Wednesday of the
week after the registration week (expressed as ISO week
running fom Monday to the Sunday preceding the
reporting date) (Fig. 1). Since no GP patient lists exist in
Belgium, the average population coverage per GP (denom-
inator) is estimated on the basis of the total Belgian popu-
lation, divided by the total number of practising GPs in
his region (based on figures from the National Institute
for Health and Disability Insurance (NIHDI) [11]). The in-
cidence is then estimated as the weekly number of ILI
cases reported by the SGP divided by that denominator.
Data from both sources were collected retrospectively

and anonymised before analysis. Ethics approval was
granted by the Ethics Committee of the University of
Antwerp for the retrospective use of OOH GCP data.
Eligible patients were informed about the scientific goal
of the clinical data collection. No written informed con-
sent was collected.
The data collected were from 27th June 2003 (week

26) to 23rd March 2012 (week 12). They were used to as-
sess the validity of OOH GPC data as a source of ILI
surveillance and to develop a model for ILI epidemics
(nine seasons). To validate the model (for three seasons),
data were collected from 24th March 2012 (week 13) to
16th August 2015 (week 33).

Validity of the OOH GPC data
To test the validity of OOHs data as a source for ILI sur-
veillance, the estimated ILI incidence trends of the OOH
GPC ILI data were compared with the trends of the
WIV-ISP network by Pearson’s correlation coefficient
within each epidemic season. ILI incidence per week is
estimated by the number of reported cases with ILI
symptoms in a certain week divided by the total number
of consultations in that week. The difference with the
denominator used by WIV-ISP in the ILI incidence cal-
culation is no objection in the comparison of the trends
as no exact match is required. However, this incidence
estimate does not take into account the data of the other
weeks, and provides no measures of variability around
the estimated trends [2]. To alleviate these issues, a first-
order random walk model (RW-1) was used to obtain

smoother ILI incidence trends and the associated confi-
dence bands.

Model selection and validation
For the univariate time series of ILI counts {yt,t =
1,…,n},n = 634, the mean incidence was decomposed
additively into an epidemic and an endemic compo-
nent. The former is assumed to capture occasional
outbreaks whereas the latter explains a baseline rate of
cases with stable temporal pattern. The parametric
model is given by

log μtð Þ ¼ β0 þ β1t þ St þ Cs
� �þ δt þ log Etð Þ;
t ¼ 1; …; n;

where β0 is the intercept; β1 t is the linear trend; St takes
values st = -(s(t-1) +⋯ + s(t-51)),t = 52,53,…,n and represents
the annual seasonal trend, Cs takes values cs = -(c(s-1) +⋯ +
c(s-k)), s = 2004,…,2015 and represents the secular trend
every k years, k = 3,4,5; Et is the total number of consulta-
tions at week t regardless of reasons. The terms in square
brackets reflects the regular seasonal variation, δt represents
the epidemic component. Poisson and Negative Binomial
(NB) likelihood were considered for the ILI series. Different
models of the epidemic component (δt) were examined: (i)
the independent and identically distributed (IID) model
assumes independent effects across time; (ii) the RW-1
model implies dependence of the current value on the
immediate past value; (iii) the first-order autoregressive
(AR-1) model assumes a correlation between current
and immediate past value (which reduces to RW-1 if
this correlation is 1); and (iv) the second-order random
walk (RW-2) model implies dependence on two previ-
ous time points. Sensitivity analyses of the prior choices
for the hyperparameter of the epidemic component
were performed. The priors considered included
Gamma (1,0.01), Gamma (1,0.001), Gamma (1,0.00001),
Gamma (1,0.00005), truncated Normal distribution
HN(0,0.01), and HN(0,0.001). All the models were fitted
using R-INLA package [12]. The Watanabe-Akaike
information criteria (WAIC) [13], the logarithmic
score [14] and the mean squared error (MSE) were
used in combination to rank and select the best
model for surveillance purposes. Here, the MSE
reflecting the long-term prediction, was calculated as
the average difference between the model prediction
of the last three seasons and the corresponding
observed data.

Surveillance applications
To illustrate the surveillance application, the predictions
of the best model are presented for the five full seasons
from 2010 to 2015 together with the results obtained
from the well-established methods using the surveillance
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package [15], including the methods that are currently
employed by the Centers for Disease Control and Pre-
vention (CDC) [16]; the Communicable Disease Surveil-
lance Centre (CDSC) [17] and the Robert Koch Institute
(RKI) [18]. To make the results comparable between
methods, data on the first seven seasons were used as
the default “past” data for each algorithm. The model
developed for ILI counts was used to make two types of
prediction: 1-week-ahead (OWA) and one-season-
ahead (OSA) prediction. The OWA was calculated
using the same approach as the Bayesian outbreak de-
tection algorithm [19]. In short, the model predicts the
ILI incidence of the immediate consecutive week, pro-
viding a threshold above which an alarm of aberrancy
will be triggered whenever the observed ILI count ex-
ceeds this threshold. The threshold is the 97.5th
percentile of the predictive posterior distribution. In
the OSA prediction, the model predictions were made
for the consecutive year, then the epidemic season indi-
cators, including the start and the duration were calcu-
lated by the moving epidemic method [20]. In both
OWA and OSA prediction, all the data up to but not
including the week/season that is currently being pre-
dicted are used for model fitting.

Results
Data description and the validity of OOH GPC data
During the study period (2003–2012), there were 72,792
patient contacts recorded. Of the patients 43.9% were men
and the mean age was 37.3 years. ILI was diagnosed in
2.2% of the cases. During the validation phase (2012–2015)
31,844 patient contacts were recorded, with a mean age of
36.9 years and of which 42.8% were men. The total number
of inhabitants evolved from 111,011 in 2003, to 120,693 in
2012 and to 123,615 in 2015 [6]. The mean ILI diagnosis/
week were 4.77 (IQR 3.00) and 3.44 (IQR 3.00) for the
initial period until 2012 and the second period from
2012 to 2015, respectively. The ILI series exhibit a
broadly regular pattern over years (Fig. 2a). Most often
the epidemic season started on week 46, except for the
pandemic in 2009–2010, and the epidemic began to die
out after a 5 weeks increase. Then the epidemic
reached the lowest activity period from week 20 on-
ward. The first activity of a new season can be observed
on week 30 with an exception for the pandemic in
2009. The epidemic seasons seem to follow a pattern
that quickly increases at the beginning and slowly de-
creases with a somewhat longer tail to the right of the
epidemic curve. Figure 2b presents the estimated OOH

A

B

Fig. 2 Data description and the validity of OOH GPC data. a Dynamics of the twelve influenza epidemic seasons from the OOH GPC data;
b Estimated ILI incidence trends from the OOH GPC data (per total number of consultations) are shown along with the trends from the WIV-ISP
data (per 100,000 persons). The light blue band presents the 95% credible interval of the estimated ILI incidence using the RW-1 model. The darker
area indicates the data used for model validation
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GPC ILI consultation trends together with the trends
from the WIV-ISP. The two sources of data show a
comparable course over years and a high correlation
within each season, i.e. Pearson correlations for each
epidemic season ranged from 0.83 to 0.97) (Table 1).

The prediction model
Table 2 presents the best models from testing different
model assumptions. The results show that the Poisson
likelihood was preferred over the NB for the ILI series
(Extended Table: see http://goo.gl/n5kHbU). Given the
same model structure, the WAICs were consistently
higher using the NB likelihood than using the Poisson
likelihood. Epidemic component modelled with the first-
order autoregressive (AR-1) was mostly better in differ-
ent model structures. The three models M1, M3, M8
provided equivalent long-term prediction quality while
their WAIC and logarithmic score are among the smal-
lest. M8, the model with the simplest structure, was used
for the surveillance application.

One week ahead and one season ahead prediction
Figure 3 illustrates the surveillance application, using the
OOH GPC model (M8) and other existing algorithms to
obtain the prediction’s upper bound and the correspond-
ing alarms, showing that the real incidence is exceeding
the predicted incidence, for the five full seasons from
2010 to 2015. The RKI’s upper bound loosely followed
the real ILI dynamic and even less so the CDC’s. The
CDSC’s upper bound exhibits departure from the real
ILI pattern in the first two seasons but catches up in the
latter three. The CDC’s upper bound is the highest and
the RKI is the lowest. As a result, the RKI gave the high-
est number of alarms over seasons whilst there are fewer

alarms from CDC. The OOH GPC model yielded the
smallest number of alarms and they appeared either in
the beginning or at the end of the season. All of the
alarms obtained from CDC and RKI were triggered dur-
ing the high intensity period of the epidemic.
The OOH GPC model (M8) was further used for OSA

prediction of the ILI epidemic. The median predicted
ILI rate for each season was obtained to calculate the
epidemic properties as presented in Table 3. The peak
week was predicted more accurately over time, but
mostly more than 1 week late. The starting week, on the
other hand, was predicted mostly 3 weeks earlier. The
best prediction was observed in the prediction of the ep-
idemics duration (see Table 3).

Discussion
Based on ILI counts of nine influenza seasons (2003–2012)
a prediction model was created taking into account an an-
nual seasonal trend and most importantly a secular trend
every 5 years. These proved to have excellent prediction
capacities for both 1 week and one season ahead. Early
detection of epidemics is a key element to prevent loss of
(quality of) life and its economic and material impact.. In
this study, the OOHs data from the GPC Deurne-
Borgerhout reveals its attractive features that can facilitate
an early detection of seasonal influenza epidemics. Their
data are collected weekly, electronically recorded and read-
ily available two days in advance of the WIV-ISP data. The
time delay of WIV-ISP data reporting is mainly a conse-
quence of the time needed for the virological confirmation
required for WIV-ISP data. Importantly, the OOH GPC
data showed remarkably high correlation with the nation-
wide data. These results illustrate that data are not only
credible but also advantageous to use for surveillance and
prediction purposes, especially for an automatic detection
system. GPC Deurne-Borgerhout is a small geographical
area, yet its representativeness for the nation-wide data is
striking. In the future, the extent of representation will be
further improved when data are collected from more
GPCs. It is worth mentioning that regardless of the lack of
virological confirmation in the OOH GPC data, the high
correlation underlines the accurateness of the used clinical
diagnosis of influenza by GPs [8].
Many algorithms used for diseases surveillance are

well-established; however, each method by some means is
context- and disease-specific. This is because of the differ-
ences in surveillance purposes, the disease’s epidemiologic
features, or the approach in calculating the alarm thresh-
old. For instances, CDC and CDSC algorithm use a gen-
eric approach to monitor several pathogens at once [17],
whereas the RKI algorithm uses different reference time
points to calculate the threshold. ILI data however exhibit
a broadly regular seasonal variation with the starting time
of the epidemic season fluctuating every year, implying

Table 1 Pearson correlations between ILI incidence from the
OOH GPC and the WIV-ISP data

Season OOH GPC vs WIV-ISP RW-1 vs WIV-ISP

2003–2004 0.91 (34) 0.94 (34)

2004–2005 0.88 (38) 0.93 (38)

2005–2006 0.76 (37) 0.83 (37)

2006–2007 0.89 (52) 0.92 (52)

2007–2008 0.78 (52) 0.89 (52)

2008–2009 0.92 (52) 0.96 (52)

2009–2010 0.95 (52) 0.97 (52)

2010–2011 0.92 (52) 0.96 (52)

2011–2012 0.87 (52) 0.91 (52)

2012–2013 0.89 (52) 0.93 (52)

2013–2014 0.85 (52) 0.93 (52)

2014–2015 0.90 (46) 0.94 (46)

OOH GPC out-of-hours general practitioner cooperative, RW-1 first order
random walk model, WIV-ISP Scientific Institute of Public Health, Numbers in
brackets are number of weeks recorded in both data
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that a method relying solely on the fixed reference time
points could be inadequate. Furthermore, secular trend is
a would-be term in the model considering the recycling of
influenza and the secular variations in population aging
over the time course of the study [21]. To this end, we first
used the Forecast library in R [22] to select the most
appropriate forecasting method using the corrected
Akaike information criteria (AICs). The resulting best-
fit AR model yielded bad prediction quality in long-
term prediction MSE because of which we moved to a
Bayesian approach. In the Bayesian mode, we incorpo-
rated a secular trend along with seasonal variations to
model the baseline ILI rate. The results showed that
the models accounting for the secular trend were
among the best models and provided better long-term
predictions, suggesting influenza epidemics possess
secular features. The epidemic component was also ex-
amined and appeared to be better modelled with AR-1,
which agrees with the literature [19, 23, 24].

The model for the surveillance application (M8) was
selected because of its similarity in structure with the
better ones and its simplicity. It properly predicted the
upcoming influenza epidemics both in the long- and
short-term by providing early and closely warning
alarms for the start of the epidemic seasons (Table 3,
Fig. 3). This is further shown in the lower number of
alarms in the epidemics periods (Fig. 3). Coherently,
the more accurate the prediction model, the less alarms
are generated. When alarms are generated, it means
they are more likely to be an irregular but real inci-
dence instead of data error. Therefore, an accurate pre-
diction model will not only reduce the number of false
alarms but also avoids raising alarms in an obvious high
incidence period, preventing unnecessary additional re-
source mobilisation in practice. With the forthcoming
data from others GPCs, further calibration of the
current model for ILI will be orchestrated. In addition,
the long-term prediction indicators (Table 3) would be

Table 2 Best models selected from fitting to the first nine seasons and the corresponding prediction error obtained from predictions for
the last three seasons of the OOH GPC data

Epidemic Endemic k logSa WAICa MSEb

AR(1) β0 + β1t + St + Cs 5 64.8761 1101.893 13.8822 M1

AR(1) β0 + β1t + St 64.9161 1103.298 17.8292 M2

AR(1) β0 + St + Cs 5 64.9217 1101.101 14.5707 M3

AR(1) β0 + St + Cs 4 64.8822 1104.608 17.1564 M4

AR(1) β0 + St 65.1286 1101.176 16.6048 M5

RW-1 β1t + St + Cs 5 64.5683 1103.741 21.1512 M6

AR(1) β1t + St 64.6006 1103.310 20458.71 M7

AR(1) St + Cs 5 64.5406 1102.243 14.2192 M8

IID St 403.3084 984.414 17.1342 M9

AR(1) St 64.3999 1102.030 908.6617 M10

AR(1) β0 + β1t + sin(2πt/52) + cos(2πt/52) 1.4243 1108.511 22.7856 M11

All the presented models used Poisson likelihood for the ILI counts. An extended table can be found [http://goo.gl/n5kHbU]; aUsed the first nine seasons data,
bfor the last three seasons data; logS logarithmic score, WAIC Watanabe-Akaike information criteria, MSE mean square error

Fig. 3 OOH GPC model and other algorithms: upperbound prediction’s and the corresponding alarms for five seasons (2010–2015). CDC: Centers
for Disease Control and Prevention [16]; OOH: out-of-hours general practitioner collaborative Deurne-Borgerhout; CDSC: the Communicable
Disease Surveillance Centre [17]; RKI the Robert Koch Institute [18]
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better calculated using the moving epidemic method
given a larger count of ILI incidences.
The OOH GPC data with its advantage in timeliness

of reporting and the ease of access has the potential to
be used in influenza outbreak surveillance systems be-
sides the existing national influenza surveillance systems.
In the future these OOH GPC data from several services
in Flanders will be secured on a weekly basis in a large
database called iCAREdata (Improving Care and Re-
search Electronic Data Trust Antwerp), promising an
even better source of surveillance data [25]. More than
simple surveillance, which describes only the past, the
OOH GPC data have the potential of accurate prediction
in the short and the long term. Using a fast computing
method, the surveillance model can be easily installed
and fully implemented on the iCAREdata database. This
would allow a prospective prediction of epidemics by
using an automated query based on the described model.
Validation of the prediction model using data from sev-
eral OOH services will be performed when iCAREdata is
fully operational. As such geographical differences could
be further detected which is not possible on a national
surveillance level.

Conclusion
ILI counts instantly extracted from OOH GPC EHRs to-
gether with an accurately performing prediction tool
based on past ILI trends have the potential of early and
accurate influenza forecasting. Such reliable influenza
forecasting allows the timely preparation of the health
care system, which benefits patients, healthcare workers
and society.
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aWeek number; bNumber of weeks; Obs. observed data, Pred. prediction. Calculations are done as in [20]. The numbers in brackets are the values calculated by
applying the calculation on 0.025 and, 0.975 percentiles of ILI prediction curves, respectively. Due to the small count, these curves are prone to distort
the calculation
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