You are viewing the site in preview mode

Skip to main content


Table 10 Distance functions to measure dissimilarity between probability density functions of stochastic observation and stochastic predicted outputs

From: A framework for evaluating epidemic forecasts

Distance function Formula (continuous form) Formula (discrete form)
Bhattacharyya D B (P,Q)=−L n(B C(P,Q)) D B (P,Q)=−L n(B C(P,Q))
  , \(BC(P,Q)=\int \sqrt {P(x)Q(x)}dx \) \(,BC(P,Q)=\sum \sqrt {P(x)Q(x)} \)
Hellinger \( D_{H}=\sqrt { 2\int {(P(x)-Q(x))^{2}}dx} \) \( D_{H}(P,Q)=\sqrt { 2\sum _{k=1}^{d} {(P(x_{k})-Q(x_{k}))^{2}}} \)
  \(= 2\sqrt {1-\int \sqrt {P(x)Q(x)}dx} \) \( = 2\sqrt {1-\sum _{k=1}^{d} \sqrt {P(x_{k})Q(x_{k})}} \)
Jaccard - D Jac =1−S Jac
   \( S_{Jac} = \frac {\sum _{k=1}^{d}{P(x_{k})\times Q(x_{k})}}{ \sum _{k=1}^{d}{P(x_{k})^{2}} + \sum _{k=1}^{d}{Q(x_{k})^{2}}- \sum _{k=1}^{d}{P(x_{k}).Q(x_{k})}} \)