You are viewing the site in preview mode

Skip to content


  • Research article
  • Open Access
  • Open Peer Review

The vaginal microflora in relation to gingivitis

  • 1, 2, 3Email author,
  • 4,
  • 5,
  • 5,
  • 1, 3,
  • 1,
  • 1,
  • 6,
  • 7,
  • 4 and
  • 4
BMC Infectious Diseases20099:6

  • Received: 27 April 2008
  • Accepted: 22 January 2009
  • Published:
Open Peer Review reports



Gingivitis has been linked to adverse pregnancy outcome (APO). Bacterial vaginosis (BV) has been associated with APO. We assessed if bacterial counts in BV is associated with gingivitis suggesting a systemic infectious susceptibilty.


Vaginal samples were collected from 180 women (mean age 29.4 years, SD ± 6.8, range: 18 to 46), and at least six months after delivery, and assessed by semi-quantitative DNA-DNA checkerboard hybridization assay (74 bacterial species). BV was defined by Gram stain (Nugent criteria). Gingivitis was defined as bleeding on probing at ≥ 20% of tooth sites.


A Nugent score of 0–3 (normal vaginal microflora) was found in 83 women (46.1%), and a score of > 7 (BV) in 49 women (27.2%). Gingivitis was diagnosed in 114 women (63.3%). Women with a diagnosis of BV were more likely to have gingivitis (p = 0.01). Independent of gingival conditions, vaginal bacterial counts were higher (p < 0.001) for 38/74 species in BV+ in comparison to BV- women. Counts of four lactobacilli species were higher in BV- women (p < 0.001). Independent of BV diagnosis, women with gingivitis had higher counts of Prevotella bivia (p < 0.001), and Prevotella disiens (p < 0.001). P. bivia, P. disiens, M. curtisii and M. mulieris (all at the p < 0.01 level) were found at higher levels in the BV+/G+ group than in the BV+/G- group. The sum of bacterial load (74 species) was higher in the BV+/G+ group than in the BV+/G- group (p < 0.05). The highest odds ratio for the presence of bacteria in vaginal samples (> 1.0 × 104 cells) and a diagnosis of gingivitis was 3.9 for P. bivia (95% CI 1.5–5.7, p < 0.001) and 3.6 for P. disiens (95%CI: 1.8–7.5, p < 0.001), and a diagnosis of BV for P. bivia (odds ratio: 5.3, 95%CI: 2.6 to 10.4, p < 0.001) and P. disiens (odds ratio: 4.4, 95% CI: 2.2 to 8.8, p < 0.001).


Higher vaginal bacterial counts can be found in women with BV and gingivitis in comparison to women with BV but not gingivitis. P. bivia and P. disiens may be of specific significance in a relationship between vaginal and gingival infections.


  • Periodontitis
  • Preterm Birth
  • Bacterial Vaginosis
  • Adverse Pregnancy Outcome
  • Gingivitis


Adverse preterm outcomes occur in approximately 10% of all pregnancies [1]. It remains a major source of neonatal morbidity and mortality. The prevalence of periodontitis in women of childbearing age is unknown. Gingivitis is a reversible inflammatory condition of keratinized and non-keratinized gum tissues surrounding the teeth. Periodontitis is a non-reversible inflammatory condition that also includes loss of alveolar bone and other tooth supporting structures. Infection with a diverse microflora is the etiology of both these conditions. The association between gingivitis or periodontitis and an increased risk of preterm birth remains a matter of dispute. Several recent studies support the hypothesis that periodontal infectious disease is a risk factor for adverse pregnancy outcomes [28]. One hypothesized mechanism is that inflammation may upregulate the inflammatory response in anatomically distinct locations such as the uterus and the amniotic cavity [79].

Bacterial vaginosis (BV), a condition characterized by decreased vaginal lactobacilli and increased anaerobic bacteria, has been associated with an increased risk of preterm birth [10, 11]. The abnormal microflora typical of BV overlaps considerably with bacterial species known to be associated with periodontal disease. For example, Prevotella bivia and Porphyromonas sp. have been associated with BV [12], whereas Prevotella intermedia and Porphyromonas gingivalis have been associated with periodontal disease [13, 14]. Higher counts of colony forming units of P. gingivalis in subgingival samples have also been observed in women who subsequently delivered prematurely [8, 15]. Despite such findings, the biological relationship between oral and vaginal infections has not been extensively studied.

The purpose of the present study was to characterize the bacterial species in vaginal samples from women of childbearing age in relation to clinical evidence of gingival inflammation (gingivitis) and bacterial vaginosis. We hypothesized that the vaginal microflora differed between women with or without overt clinical evidence of gingivitis. We also hypothesized a co-occurrence of BV and gingivitis.


The Human Research Review Board of the Washington State Department of Health approved the study. All subjects signed informed written consent as required by the IRB. The study cohort included parous women with no known systemic disease, who were recruited based on a previous history of early preterm delivery (20–34 weeks gestation) or term delivery (≥ 37 weeks gestation). A preterm birth occurred among 17 (9.2%) of the women participating in the present study. All women had delivered at least 6 months prior to study entry and microbiological sampling.

The women had a gynecological examination with collection of vaginal by insertion of a Dacron swab into the vaginal vault. One swab was used to prepare an air-dried slide for Gram stain for BV diagnosis according to the Nugent criteria [11]. A second swab tip was placed in a cryovial eluted in 0.9 ml phosphate buffered saline and stored at -80°C until transported on dry ice by express courier to the Oral Microbiology Laboratory at the University of Berne, Switzerland, for analysis of microbial content.

Women also had a standard periodontal examination at the Regional Clinical Dental Research Center (RCDRC), School of Dentistry at the University of Washington, Seattle, WA. Gingivitis was defined as having ≥ 20% of gingival sites surfaces (six examined per tooth) with bleeding on probing (BOP). This cutoff level is considered a useful criterion to establish gingivitis and is used as a basic principle in the standard practice of periodontal care. Clinical probing pocket depths around all teeth and intra-oral radiographs were also assessed to define if the women also had a diagnosis of periodontitis (alveolar bone loss and evidence of increased probing pocket depth/clinical attachment loss).

A total of 180 women who had given birth at least six months prior to enrollment were included in this analysis. Their mean age was 29.4 years (SD ± 6.8, range: 18 to 46). The racial groups were as follows: 60 Caucasians (32.6%), 82 African-Americans (44.6%), 9 Native Americans (4.9%), and 33 of other races (17.9%).

Microbiological processing

At the microbiology laboratory, 300 μl Tris EDTA buffer (10 mM Tris-HCL, 1.0 mM EDTA, pH 7.6) was added to each vial with a vaginal swab, allowed to stand for 10 minutes, and was then sonicated for 10 seconds. Subsequently, 200 μl of freshly made 0.5 M NaOH was added to each vial and the swab was removed before freezing the sample. Samples were then processed within three months. Before processing, the samples were diluted fourfold with Tris EDTA buffer and aliquoted into two vials. These were processed by the checkerboard DNA-DNA hybridization method as described in detail elsewhere [1619]. DNA probes used in the checkerboard DNA-DNA format provide a useful tool for the enumeration of bacterial species in microbiologically complex systems [17]. One vial was used to check for the presence of the species of which probes were present on the first panel, the other vial for the species of the second panel (Table 1). The information was digitized and analyzed by the software program ImageQuant (Amersham Pharmacia, Piscataway, NJ) allowing comparison of signal intensities against standard lanes containing DNA extracted from 105 and 106 bacterial cells in the appropriate checkerboard slot for all species. Routine laboratory assessment of the reproducibility suggested a very high level of reliability varying within species by 1–2%. Signals were converted to semi-quantitative counts by comparison with these standards. For dichotomous analysis of the data, a signal strength of ≥ 1 × 104 bacterial cells was considered as positive. The species that were studied are listed in Table 1. The species listed in Panel 1 are commonly assessed by the checkerboard DNA-DNA hybridization method in studies of bacteria associated with periodontitis [19, 20]. These were either part of the original microbiological laboratory library of species [19, 20] or had been provided by the Department of Clinical Chemistry, Microbiology and Immunology at the University of Ghent, Belgium (UGent). Some species or DNA had been purchased from LGC Promochem, Molsheim, France. The identification of species from the University of Ghent has been described elsewhere [2124]. Thus the bacteria listed in Panel 2 are commonly assessed in studies of BV.
Table 1

Bacterial species and subspecies included in the DNA-DNA checkerboard assay

Species Panel 1


Species Panel 2


1a. Aggregatibacter actinomycetemcomitans (a)

ATCC 29523

1. Actinomyces neuii

GUH 550898

1b. Aggregatibacter actinomycetemcomitans (Y4)

ATCC 43718

2. Aerococcus christensenii

GUH 070938

2. Actinomyces israelii

ATCC 12102

3. Anaerococcus vaginalis

GUH 290486

3. Actinomyces naeslundii (type I + II)

ATCC 43146

4. Atopobium parvulum

GUH 160323

4. Actinomyces odontolyticum

ATCC 17929

5. Atopobium vaginae

GUH 010535

5. Campylobacter gracilis

ATCC 33236

6. Bacteroides ureolyticus

GUH 080189

6. Campylobacter rectus

ATCC 33238

7. Bifidobacterium biavatii

GUH 071026

7. Campylobacter showae

ATCC 51146

8. Bifidobacterium bifidum

GUH 070962

8. Capnocytophaga gingivalis

ATCC 33612

9. Bifidobacterium breve

GUH 080484

9. Capnocytophaga ochraceae

ATCC 33596

10. Bifidobacterium longum

GUH 180689

10. Capnocytophaga sputigena

ATCC 33612

11. Corynebacterium aurimucosum

GUH 450453

11. Eikenella corrodens

ATCC 23834

12. Corynebacterium nigricans

GUH 071035

12. Eubacterium saburreum

ATCC 33271

13. Dialister sp.


13a. Fusobacterium nucleatum subsp. Nucleatum

ATCC 25586

14a. Enterococcus faecalis


13b. Fusobacterium nucleatum subsp. Polymorphum

ATCC 10953

14b. Enterococcus faecalis

ATCC 29212

13c. Fusobacterium nucleatum subsp.Naviforme

ATCC 49256

15. Escherichia coli

GUH 070903

14. Fusobacterium periodonticum

ATCC 33693

16. Gardnerella vaginalis

GUH 080585

15. Lactobacillus acidophilus

ATCC 11975

17. Haemophilus influenzae

ATCC 49247

16. Leptotrichia buccalis

ATCC 14201

18. Helicobacter pylori

ATCC 43504

17. Parvimonas micra

ATCC 19696

19. Lactobacillus crispatus

GUH 160342

18. Neisseria mucosa

ATCC 33270

20. Lactobacillus gasseri

GUH 170856

19. Prevotella intermedia

ATCC 25611

21. Lactobacillus iners

GUH 160334

20. Prevotella melaninogenica

ATCC 25845

22. Lactobacillus jensenii

GUH 160339

21. Prevotella nigrescens

ATCC 33563

23. Lactobacillus vaginalis

GUH 0780928

22. Porphyromonas gingivalis

ATCC 33277

24. Mobiluncus curtisii

GUH 070927

23. Propionibacterium acnes (type I+II)


25. Mobiluncus mulieris

GUH 070926

24. Selenomonas noxia

ATCC 43541

26. Peptoniphilus sp.

GUH 550970

25. Staphylococcus aureus

ATCC 25923

27. Porphyromonas endodontalis


26. Streptococcus anginosus

ATCC 33397

28. Peptostreptococcus anaerobius

GUH 160362

27. Streptococcus constellatus

ATCC 27823 (M32b)

29. Prevotella bivia

GUH 450429

28. Streptococcus gordonii

ATCC 10558

30. Prevotella disiens

GUH 190184

29. Streptococcus intermedius

ATCC 27335

31. Prevotella mirabilis

GUH 070918

30. Streptococcus mitis

ATCC 49456

32. Pseudomonas aeruginosa

ATCC 33467

31. Streptococcus oralis

ATCC 35037

33a. Staphylococcus aureus (yellow)

GUH 070921

32. Streptococcus sanguinis

ATCC 10556

33b. Staphylococcus aureus (white)

GUH 070922

33. Streptococcus mutans

ATCC 25175

34. Staphylococcus epidermidis

GUH 130381

34. Tannerella forsythia

ATCC 43037 (338)

35. Staphylococcus haemolyticus


35. Treponema denticola

ATCC 35405

36. Streptococcus agalactiae

GUH 230282

36. Treponema socranskii


37. Varibaculum cambriense

GUH 070917

37. Veillonella parvula

ATCC 10790


Legend: * ATCC: American Type Culture Collection; D: sample from Forsyth Institute, Massachusetts; GUH: Ghent University Hospital Collection, Ghent, Belgium

Statistical methods

We used One-way ANOVA (Bonferonni post-hoc test) and non-parametric Mann-Whitney U tests, and Kruskal-Wallis ANOVA to assess differences in the quantity of each bacterial species by defined group. Adjustment for multiple comparisons was made and a statistically significant difference was defined by p < 0.001. P-values < 0.01 and < 0.05 were considered as trends of difference. Mantel-Haenszel common odds ratios, sensitivity, and specificity estimations were calculated in order to assess the predictive utility of each vaginal bacterial species in diagnosing gingivitis. The SPSS statistical software 16.0 for MAC OS X was used for the analysis (SPSS Inc., Chicago, IL).


A Nugent score of 0–3, considered as indicative for normal vaginal microflora without signs of inflammation, was found in 83 women (46.1%), and a score of > 7, i.e. clear BV was present in 49 women (27.2%). A total of 38 women (21.1%) had both BV and gingivitis, 54 (30.0%) showed no evidence of either BV or gingivitis, 17 (9.4%) had BV but not gingivitis, and 71 (39.4%) had gingivitis but not BV. Women with a diagnosis of BV had a higher proportion of tooth surfaces with evidence of gingivitis (p = 0.007).

The vaginal microflora of women in relation to a diagnosis of bacterial vaginosis, and independent of gingival conditions

The bacterial species assessed are identified in Table 1. The presence of streptococci, staphylococci and enterococci studied did not differ by BV status. In vaginal samples from women with BV, but independent of gingival status significantly higher bacterial loads (p < 0.001) were observed for the following 38/74 species: A. actinomycetemcomitans (Y4,), A. israelii, A. naeslundi, A. neuii, A. odontolyticus, A. christensenii, B. biavatii, B. longum, B. ureolyticus, C. gingivalis, C. aurimucosum, C. ochraceae, C. sputigena, C. gracilis, C. rectus, C. showae, E. coli, E. corrodens, F. nucl. naviforme, F. nucl. nucleatum, F. nucl. polymorphum, F. periodonticum, H. influenzae, M. curtisii, M. mulieris, P. micra, P. gingivalis, P. bivia, P. disiens, P. intermedia, P. melaninogenica, P. nigrescens, P. acnes, P. aeruginosa, T. forsythia, S. noxia, T. socranskii and V. cambriense. However , L. crispatus, L. gasseri, L. iners, and L. vaginalis were found at higher counts at sites without BV (p < 0.001).

The relationship between the vaginal microflora and gingivitis

Significantly higher vaginal bacterial counts (p < 0.001) were found for 49/74 species (23 from panel 1 and 26 from panel 2) in BV+ women with a concurrent diagnosis of gingivitis as compared to women who neither had BV nor gingivitis. At the p < 0.001 level this included in addition to those reported above the following species: A. vaginae, B. brevis, C. nigricans, Dialister sp., E. saburreum, L. buccalis, N. mucosa, Petoniphilus sp., P. nigrescens, P. anaerobius, and V. parvula.

Table 2 presents the prevalence rates of bacterial species collected from vaginal samples at the > 1 × 104 detection level demonstrating statistically significant differences by gingival status but independent of BV diagnosis. For 2 of the 74 species tested, P. bivia and P. disiens, higher bacterial counts were observed in subjects with gingivitis (Mann-Whitney U-test, p < 0.001). Trends of differences at the p < 0.01 level were also observed for B. ureolyticus, M. curtisii, M. mulieris, and P. aeruginosa, as well as at the p < 0.05 for G. vaginalis, P. intermedia, P. nigrescens, and V. cambriense. The sensitivity, specificity and odds ratio characteristics of the predictive values for the 6 species with statistically significant odds distinguishing gingival status are presented in Table 3. The remaining 4 species identified in Table 2 failed to qualify. Thus, when P. bivia was present in the vaginal samples, the odds ratio for gingivitis was 3.9 (95% CI 1.5–5.7, p < 0.001). When P. disiens was present in the vaginal samples, the odds ratio for a diagnosis of gingivitis was 3.6 (95%CI: 1.8–7.5, p < 0.001). The corresponding odds ratio for a diagnosis of BV was 5.3 for P. bivia (95%CI: 2.6 to 10.4, p < 0.001) and 4.4 for P. disiens (95% CI: 2.2 to 8.8, p < 0.001).
Table 2

Prevalence of vaginal bacterial species (cut off level: > 1 × 104 cells) for which a significant difference was observed by gingivitis status


No gingivitis

(n = 64)


(n = 116)


Prevotella bivia



< 0.001

Prevotella disiens



< 0.001

Bacteroides ureolyticus



< 0.01

Mobiluncus curtisii



< 0.01

Mobiluncus mulieris



< 0.01

Pseudomonas aeruginosa



< 0.01

Gardnerella vaginalis



< 0.05

Prevotella intermedia



< 0.05

Prevotella nigrescens



< 0.05

Varibaculum cambriense



< 0.05

Legend: Expressed as percentages.

Table 3

The predictive value of the presence (cut off level: 1 × 104 cells) of P. bivia, P. disiens, M. curtisii, M. mulieris, B. ureolyticus, and V. cambriense in vaginal samples for the diagnosis of gingivitis (20% cutoff level)




Odds ratio

95% CI


Prevotella bivia




1.7 to 33.8

< 0.001

Prevotella disiens




1.8 to 7.1

< 0.001

Mobiluncus curtisii




1.4 to 5.8

< 0.01

Mobiluncus mulieris




1.8 to 12.6

< 0.01

Bacteroides ureolyticus




1.2 to 9.1

< 0.02

Varibaculum cambriense




1.0 to 4.1

< 0.05

Differences in bacterial levels by differentiation between subjects with any of four BV and gingivitis diagnostic combinations

The distributions of P. bivia and P. disiens in vaginal samples for the four different populations according to combination of vaginal and gingival microflora (BV+/G+, BV-/G-, BV+/G- and BV-/G+) are presented in a boxplot diagram (Figure 1). Analysis by Kruskal-Wallis ANOVA identified differences in bacterial levels at the p < 0.001 level by the combined vaginal and periodontal diagnostic criteria for 49/74 species identified in vaginal samples between BV+/G+ and BV-/G- women and at the p < 0.001 level for the following species: A. actinomycetemcomitans (serotype Y4), A. actinomycetemcomitans (serotype b), A. israelii, A. naeslundii, A. neuii, A. christensenii, A. vaginae, A. odontolyticus, B. ureolyticus, B. biavatii, B. breve, B. longum, C. nigricans, C. aurimucosum, C. gingivalis, C. gracilis, C. ochracea, C. rectus, C. showae, Dialister sp. E. coli, E. corrodens, E. saburreum, F. nucl. nucleatum, F. nucl. polymorphum, F. nucl. naviforme, F. periodonticum, H. influenzae, L. buccalis, M. curtisii, M. mulieris, Peptoniphilus sp., N. mucosa, P. aeruginosa, P. micra, P. anaerobius, P. mirabilis, P. bivia, P. disiens, P. intermedia, P. melaninogenica, P. nigrescens, P. gingivalis, P. acnes, S. noxia, T. forsythia, T. socranskii, V. cambriense, and V. parvula.
Figure 1
Figure 1

Boxplot diagram demonstrating differences in vaginal load for P. bivia and P. disiens by combined diagnostic criteria (Bacterial vaginosis neg and gingivitis neg (BV-/G-), Bacterial vaginosis pos. and Gingivitis pos. (BV+/G+), Bacterial vaginosis pos. and Gingivitis neg. (BV+/G-), and Bacterial vaginosis neg. and Gingivitis pos. (BV-/G+). (* = extreme outliers, ° = outlier values).

Specifically, higher counts in vaginal samples were found in women in the BV+/G+ group in comparison to the BV+/G- group for P. bivia, P. disiens, M. curtisii, and M. mulieris (all at the p < 0.01 level). Further analysis demonstrated that the sum of bacterial load including all 74 species studies was higher in the BV+/G+ group than in the BV+/G- group (p < 0.05), but was also higher than in separate comparisons with the two other possible diagnostic combinations (p < 0.01).


The checkerboard DNA-DNA hybridization method has been demonstrated to be useful in studies of changes in vaginal microflora during pregnancy [25, 26]. Checkerboard DNA-DNA hybridization is also commonly used in studies on the oral microflora [i.e. [13, 14, 1618, 20]], and has also been used to assess the microflora in synovial fluid of subjects with rheumatoid arthritis [27]. Studies of the bacterial colonization of the oral cavity have shown that Actinomyces sp. [28], Fusobacterium spp. [29], Prevotella sp. [30], Capnocytophaga sp. [31] and T. forsythia [32] are associated with gingivitis.

In accordance with the study by Boggess et al. [25], who also using DNA-DNA hybridization in the assessment of vaginal species the present study identified that B. ureolyticus and M. curtisii were commonly found in vaginal samples. We also indentified that, in women with BV and gingivitis and in comparison with those with BV but not gingivitis, the vaginal samples demonstrated significantly higher counts of bacteria commonly associated with periodontal disease including: A. actinomycetemcomitans (Y4), Fusobacterium sp., P. micra, P. intermeda P. gingivalis, and T. forsythia. The role of these bacteria as potential infectious etiological factors in adverse pregnancy outcomes in the context of oral/gingival infection needs to be further explored as also indicated by others [8, 15]. The fact that some bacterial species were found at higher counts in the vaginal samples of women with BV and gingivitis than among those only with BV may be an important observation suggesting that having gingivitis has an impact on the bacterial load in women with BV.

The prevalence of gingivitis in our study population (62%) was higher than the gingivitis prevalence of 48% reported in NHANES III (National Health and Nutrition Examination Survey) [33]. This may be explained by the ethnic distribution and inclusion of many women with low socio-economic status [34]. Studies that have associated periodontal disease with a risk of preterm birth have used a variety of periodontal diagnostic criteria against which the risk of preterm birth has been considered. One of the problems is that periodontitis usually does not present with unequivocal clinical evidence of disease until subjects are at about age 40. Gingivitis is common in younger age groups. The inflammatory response in gingivitis is primarily a cellular immune response [35]. Data from one study suggest that treatment of gingivitis in pregnant women significantly reduced the risk of preterm birth [36]. Due to the fact that only 17 of the women with a high risk for a preterm birth complication in the present study delivered preterm, a statistical analysis of the data based on delivery status was not performed.

This is the first study to demonstrate a link between vaginal bacteria and gingivitis. Others have suggested that the hematogenous route allows the spread of opportunistic pathogens from one location to another [35]. It is also plausible that opportunistic bacteria take advantage of host specific factors and colonize wherever growth conditions are suitable. The oral and vaginal environments may provide such similar colonization and growth conditions in a susceptible host. Further studies are warranted to explore the relationship between oral and vaginal microflora and infections. Further studies are warranted to explore the relationship between the oral and vaginal infection patterns and how this may explain why periodontal disease (including gingivitis) may be a potential adjunct cause of adverse pregnancy outcomes [28, 15, 36].

In a recent periodontal intervention study of pregnant women with periodontitis, the data failed to demonstrate that periodontal intervention had an impact on pregnancy outcomes [37]. Treatment was also restricted to mechanical subgingival debridement and may not have affected bacterial presence in relation to persistent gingivitis, or reduced gingivitis to levels < 20% used as criteria in the present study. Although the survival rate of premature neonates has improved greatly in developed countries, the prevalence of preterm birth rates have not declined and various intervention studies to control for BV and other risk factors have not been successful [38]. Thus, significantly reducing preterm births may require a broader approach to care not limited to vaginal conditions but also include oral infections such as gingivitis.


  • Women with a diagnosis of BV have a higher proportion of tooth surfaces with evidence of gingivitis

  • Women with BV and gingivitis and in comparison to those without BV and gingivitis have higher vaginal bacterial counts including bacteria commonly associated with both BV periodontal disease than women with BV but without a diagnosis of gingivitis

  • P. bivia, and P. disiens, may be of importance in women with both BV and gingivitis.



The Clinical Research Foundation (CRF) at the University of Bern, Switzerland, the Foundation for Scientific Research (FWO), Flanders, Belgium (G.01.79.04), and the National Institutes of Health (HD-41682) and the NIDCR grant P30 DEO 9743 funded the study.

Authors’ Affiliations

Department of Periodontology, Div of Oral Microbiology, University of Berne, Berne, Switzerland
Department of Periodontics, University of Washington, Seattle, WA, USA
Department of Oral Medicine, University of Washington, Seattle, WA, USA
Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
Regional Clinical Dental Research Center (RCDRC), University of Washington, Seattle, WA, USA
Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium


  1. Joseph KS, Huang L, Liu S, Ananth CV, Allen AC, Sauve R, Kramer MS: Fetal and Infant Health Study Group of the Canadian Perinatal Surveillance System. Reconciling the high rates of preterm and postterm birth in the United States. Obstet Gynecol. 2007, 109: 813-822.View ArticlePubMedGoogle Scholar
  2. Marin C, Segura-Egea JJ, Martinez-Sahuquillo A, Bullon P: Correlation between infant birth weight and mother's periodontal status. J Clin Periodontol. 2005, 32: 299-04. 10.1111/j.1600-051X.2005.00661.x.View ArticlePubMedGoogle Scholar
  3. Bosnjak A, Relja T, Vucicevic-Boras V, Plasaj H, Plancak D: Pre-term delivery and periodontal disease: a case-control study from Croatia. J Clin Periodontol. 2006, 33: 710-16. 10.1111/j.1600-051X.2006.00977.x.View ArticlePubMedGoogle Scholar
  4. Jarjoura K, Devine PC, Perez-Delboy A, Herrera-Abreu M, D'Alton M, Papapanou PN: Markers of periodontal infection and preterm birth. Am J Obstet Gynecol. 2005, 192: 513-19. 10.1016/j.ajog.2004.07.018.View ArticlePubMedGoogle Scholar
  5. Offenbacher S, Boggess KA, Murtha AP, Jared HL, Lieff S, McKaig RG, Mauriello SM, Moss KL, Beck JD: Progressive periodontal disease and risk of very preterm delivery. Obstet Gynecol. 2006, 107: 29-36.View ArticlePubMedGoogle Scholar
  6. Radnai M, Gorzo I, Urban E, Eller J, Novak T, Pal A: Possible association between mother's periodontal status and preterm delivery. J Clin Periodontol. 2006, 33: 791-796. 10.1111/j.1600-051X.2006.00986.x.View ArticlePubMedGoogle Scholar
  7. Hasegawa K, Furuichi Y, Shimotsu A, Nakamura M, Yoshinaga M, Kamitomo M, Hatae M, Maruyama I, Izumi Y: Associations between systemic status, periodontal status, serumcytokine levels, and delivery outcomes in pregnant women with a diagnosis of threatened premature labor. J Periodontol. 2003, 74: 1764-1770. 10.1902/jop.2003.74.12.1764.View ArticlePubMedGoogle Scholar
  8. Dörtbudak O, Eberhardt R, Ulm M, Persson GR: Periodontitis, a marker of risk in pregnancy for preterm birth. J Clin Periodontol. 2005, 32: 45-52. 10.1111/j.1600-051X.2004.00630.x.View ArticlePubMedGoogle Scholar
  9. Sánchez AR, Bagniewski S, Weaver AL, Vallejos N: Correlations between maternal periodontal conditions and preterm low birth weight infants. J Int Acad Periodontol. 2007, 9: 34-41.PubMedGoogle Scholar
  10. Hay PE, Lamont RF, Taylor-Robinson D, Morgan DJ, Ison C, Pearson J: Abnormal bacterial colonization of the genital tract and subsequent preterm delivery and late miscarriage. BMJ. 1994, 308: 295-298.View ArticlePubMedPubMed CentralGoogle Scholar
  11. Hillier S, Nugent R, Eschenbach D, Krohn M, Gibbs R, Martin DCM, Cotch MF, Edelman R, Pastorek JG, Rao AV, McNellis D, Regan JA, Carey JC, Klebanoff MA, for The Vaginal Infections and Prematurity Study Group: Association between bacterial vaginosis and preterm delivery of a low-birth-weight infant. N Engl J Med. 1995, 333: 1737-1742. 10.1056/NEJM199512283332604.View ArticlePubMedGoogle Scholar
  12. Smayevsky J, Canigia LF, Lanza A, Bianchini H: Vaginal microflora associated with bacterial vaginosis in nonpregnant women: reliability of sialidase detection. Infect Dis Obstet Gynecol. 2001, 9: 17-22. 10.1155/S1064744901000047.View ArticlePubMedPubMed CentralGoogle Scholar
  13. Haffajee AD, Japlit M, Bogren A, Kent RL, Goodson JM, Socransky SS: Differences in the subgingival microbiota of Swedish and USA subjects who were periodontally healthy or exhibited minimal periodontal disease. J Clin Periodontol. 2005, 32: 33-39. 10.1111/j.1600-051X.2004.00624.x.View ArticlePubMedGoogle Scholar
  14. Haffajee AD, Teles RP, Socransky SS: Association of Eubacterium nodatum and Treponema denticola with human periodontitis lesions. Oral Microbiol & Immunol. 2006, 21: 269-282. 10.1111/j.1399-302X.2006.00287.x.View ArticleGoogle Scholar
  15. Urban E, Radnai M, Novak T, Gorzo I, Pal A, Nagy E: Distribution of anaerobic bacteria among pregnant periodontitis patients who experience preterm delivery. Anaerobe. 2006, 12: 52-57. 10.1016/j.anaerobe.2005.08.001.View ArticlePubMedGoogle Scholar
  16. Socransky SS, Smith C, Martin L, Paster BJ, Dewhirst FE, Levin AE: "Checkerboard" DNA-DNA hybridization. Biotechniques. 1994, 17: 788-792.PubMedGoogle Scholar
  17. Socransky SS, Haffajee AD, Smith C: Use of checkerboard DNA-DNA hybridization to study complex microbial ecosystems. Oral Microbiol & Immunol. 2004, 9: 352-362. 10.1111/j.1399-302x.2004.00168.x.View ArticleGoogle Scholar
  18. Socransky SS, Haffajee AD, Smith C: Use of checkerboard DNA-DNA hybridization to study complex microbial ecosystems. Oral Microbiol & Immunol. 2004, 9: 352-362. 10.1111/j.1399-302x.2004.00168.x.View ArticleGoogle Scholar
  19. Katsoulis J, Heitz-Mayfield LJ, Weibel M, Hirschi R, Lang NP, Persson GR: Impact of sample storage on detection of periodontal bacteria. Oral Microbiol & Immunol. 2005, 20: 128-130. 10.1111/j.1399-302X.2004.00200.x.View ArticleGoogle Scholar
  20. Agerbaek MR, Lang NP, Persson GR: Microbiological composition associated with interleukin-1 gene polymorphism in subjects undergoing supportive periodontal therapy. J Periodontol. 2006, 77: 1397-1402. 10.1902/jop.2006.050212.View ArticlePubMedGoogle Scholar
  21. Verhelst R, Verstraelen H, Claeys G, Verschraegen G, Delanghe J, Van Simaey L, De Ganck C, Temmerman M, Vaneechoutte M: Cloning of 16S rRNA genes amplified from normal and disturbed vaginal microflora suggests a strong association between Atopobium vaginae, Gardnerella vaginalis and bacterial vaginosis. BMC Microbiol. 2004, 21 (4): 16-10.1186/1471-2180-4-16.View ArticleGoogle Scholar
  22. Baele M, Baele P, Vaneechoutte M, Storms V, Butaye P, Devriese LA, Verschraegen G, Gillis M, Haesebrouck F: Application of tRNA intergenic spacer PCR for identification of Enterococcus species. J Clin Microbiol. 2000, 38: 4201-4207.PubMedPubMed CentralGoogle Scholar
  23. Verhelst R, Verstraelen H, Claeys G, Verschraegen G, Van Simaey L, De Ganck C, De Backer E, Temmerman M, Vaneechoutte M: Comparison between Gram stain and culture for the characterization of vaginal microflora: definition of a distinct grade that resembles grade I microflora and revised categorization of grade I microflora. BMC Microbiol. 2005, 14 (5): 61-10.1186/1471-2180-5-61.View ArticleGoogle Scholar
  24. Verstraelen H, Verhelst R, Claeys G, Temmerman M, Vaneechoutte M: Culture-independent analysis of vaginal microflora: the unrecognized association of Atopobium vaginae with bacterial vaginosis. Am J Obstet Gynecol. 2004, 191: 1130-1132. 10.1016/j.ajog.2004.04.013.View ArticlePubMedGoogle Scholar
  25. Boggess KA, Trevett TN, Madianos PN, Rabe L, Hillier SL, Beck J, Offenbacher S: Use of DNA hybridization to detect vaginal pathogens associated with bacterial vaginosis among asymptomatic pregnant women. Am J Obstet Gynecol. 2005, 193: 752-756. 10.1016/j.ajog.2005.01.068.View ArticlePubMedGoogle Scholar
  26. Skuldbol T, Johansen KH, Dahlen G, Stoltze K, Holmstrup P: Is pre-term labour associated with periodontitis in a Danish maternity ward?. J Clin Periodontol. 2006, 33: 177-183. 10.1111/j.1600-051X.2006.00899.x.View ArticlePubMedGoogle Scholar
  27. Moen K, Brun JG, Valen M, Skartveit L, Ribs Eribe EK, Olsen I, Jonsson R: Synovial inflammation in active rheumatoid arthritis and psoriatic arthritis facilitates trapping of a variety of oral bacterial DNAs. Clin Exp Rheumatol. 2006, 24: 656-663.PubMedGoogle Scholar
  28. Syed SA, Loesche LW: Bacteriology of human experimental gingivitis: effect of plaque age. Infect & Immun. 1978, 21: 821-829.Google Scholar
  29. Moore WE, Holdeman LV, Smibert RM, Good IJ, Burmeister JA, Palcanis KG, Ranney RR: Bacteriology of experimental gingivitis in young adult humans. Infect & Immun. 1982, 38: 651-667.Google Scholar
  30. Torresyap G, Haffajee AD, Uzel NG, Socransky SS: Relationship between periodontal pocket sulfide levels and subgingival species. J Clin Periodontol. 2003, 30: 1003-1010. 10.1034/j.1600-051X.2003.00377.x.View ArticlePubMedGoogle Scholar
  31. Mombelli A, Lang NP, Burgin WB, Gusberti FA: Microbial changes associated with the development of puberty gingivitis. J Periodontal Res. 1990, 25: 331-338. 10.1111/j.1600-0765.1990.tb00924.x.View ArticlePubMedGoogle Scholar
  32. Benjasupattananan S, Lai CS, Persson GR, Pjetursson BE, Lang NP: Effect of a stannous fluoride dentifrice on the sulcular microbiota: a prospective cohort study in subjects with various levels of periodontal inflammation. Oral Health Prev Dent. 2005, 3: 263-72.PubMedGoogle Scholar
  33. Taichman LS, Eklund SA: Oral contraceptives and periodontal diseases: rethinking the association based upon analysis of national health and nutrition examination survey data. J Periodontol. 2005, 76: 1374-1385. 10.1902/jop.2005.76.8.1374.View ArticlePubMedGoogle Scholar
  34. Dye BA, Tan S, Smith V, Lewis BG, Barker LK, Thornton-Evans G, Eke PI, Beltrán-Aguilar ED, Horowitz AM, Li CH: Trends in oral health status: United States, 1988–1994 and 1999–2004. Vital Health Stat 11. 2007, 248: 1-92.PubMedGoogle Scholar
  35. Hill GB: Preterm birth: associations with genital and possibly oral microflora. Ann Periodontol. 1998, 3: 222-232.View ArticlePubMedGoogle Scholar
  36. Lopez NJ, Da Silva I, Ipinza J, Gutierrez J: Periodontal therapy reduces the rate of preterm low birth weight in women with pregnancy-associated gingivitis. J Periodontol. 2005, 76 (Suppl 11): 2144-2153. 10.1902/jop.2005.76.11-S.2144.View ArticlePubMedGoogle Scholar
  37. Michalowicz BS, Hodges JS, DiAngelis AJ, Lupo VR, Novak MJ, Ferguson JE, Buchanan W, Bofill J, Papapanou PN, Mitchell DA, Matseoane S, Tschida PA: Treatment of periodontal disease and the risk of preterm birth. N Engl J Med. 2006, 355: 1885-1894. 10.1056/NEJMoa062249.View ArticlePubMedGoogle Scholar
  38. Goldenberg RL, Culhane JF: Low birth weight in the United States. Am J Clin Nutr. 2007, 85: 584S-590S.PubMedGoogle Scholar
  39. Pre-publication history

    1. The pre-publication history for this paper can be accessed here:


© Persson et al; licensee BioMed Central Ltd. 2009

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.